Abstract
A series of Fe3O4/ZnO/CuO/nanographene platelets (Fe3O4/ZnO/CuO/NGP) nanocomposites with various NGP weight percents were studied as catalysts for methylene blue removal under adsorption followed by sonocatalytic process. Weight percents (wt.%) of NGP in the nanocomposites were varied (5, 10, and 15 wt.%). The physicochemical properties of the samples were characterized using X-Ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, Brunauer–Emmett–Teller (BET) surface area analysis, and a vibrating sample magnetometer (VSM). The heterogeneous structure of all samples consisted of the cubic spinel structure of Fe3O4, hexagonal wurtzite structure of ZnO, monoclinic structure of CuO, and graphite-like structure of NGP. With increasing NGP weight percent, sample surface area increased from 14 m2/g to 23 m2/g. Adsorption and sonocatalytic activity were examined on degradation of methylene blue in alkaline conditions. The results show that the adsorption ability of samples increased with increasing NGP weight percent. However, in the sonocatalytic process, Fe3O4/ZnO/CuO/NGP with 10 wt.% NGP exhibited the maximum degradation. The effect of addition different radical scavenger was also examined to understand the sonocatalytic mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.