Abstract

Pesticide sustained-release agents have advantages of low toxicity, high efficiency, and long duration. However, the sustained-release effects were not ideal, such as short release time and low release rate. The physical and chemical properties of diatomite are high stability, high porosity, and good sustained-release and controlled-release abilities. A series of diatomite-based pesticide sustained-release agents were prepared by adsorbing hymexazol onto diatomite. Kinetics, equilibrium, and thermodynamic studies for adsorption were carried out as well. It was found that the modified diatomite has a better adsorption effect for hymexazol, and the adsorption rate reached 16.64%. The equilibrium data followed with the Langmuir isotherm model, and the adsorption process was an endothermic process. Release results showed that the diatomite-based pesticide has a significant sustained-release effect. The sustained-release time reached more than 25 days, and the maximum release rate was above 70%. The experimental data was fitted into the Ritger–Peppas equation, and it was found that the release was controlled by the Fick diffusion mechanism. This confirmed the applicability of the modified diatomite as an efficient adsorption carrier for pesticide release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.