Abstract

We have investigated the modulation of the delayed rectifier potassium channel in calf cardiac Purkinje fibers by the neurohormone norepinephrine. We find that 0.5 microM norepinephrine increases this K channel current by a factor of 2.7. A maximal increase of about four was found for concentrations of 1 microM and above. Norepinephrine produced a small (less than 5 mV) and variable shift of the K channel reversal potential toward more negative values. The kinetics of the potassium channel are well described by a two-exponential process, both in the absence and presence of norepinephrine. However, norepinephrine substantially decreases the slower time constant with no significant effect on the fast time constant. Potassium channel activation curves in the presence of norepinephrine are very similar to control curves except at large positive potentials. A simple sequential three-state model for this channel can reproduce these data both with and without norepinephrine. The logarithms of the rate constants derived from this model are quadratic functions of voltage, suggesting the involvement of electric field-induced dipoles in the gating of this channel. Most of the kinetic effects of norepinephrine appear to be on a single rate constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.