Abstract

We have recently shown that wild type mice are highly tolerant, whereas thyrotropin receptor (TSHR) knockout (KO) mice are susceptible to immunization with the mouse TSHR, the autoantigen in Graves' disease. However, because TSHR KO mice lack the endogenous TSHR, Graves-like hyperthyroidism cannot be expected to occur in these mice. We therefore performed adoptive transfer of splenocytes from TSHR KO mice into nude mice expressing the endogenous TSHR. Anti-TSHR autoantibodies were detected in approximately 50 % recipient mice 4 wk after adoptive transfer of splenocytes (5 × 10⁷/mouse) from TSHR KO mice immunized with adenovirus expressing mTSHR A subunit and persisted for 24 wk. Depletion of regulatory T cells by anti-CD25 antibody in the donor mice increased successful transfer rates without increasing antibody levels. Some recipient mice showed transient increases in thyroid-stimulating antibodies and T₄ levels 4-8 wk after transfer, but many became thyroid-blocking antibody positive and hypothyroid 24 wk later. Adoptive transfer of splenocytes from naïve TSHR KO mice transiently induced very low antibody titers when the recipient mice were treated with anticytotoxic lymphocyte antigen 4 and antiprogrammed cell death 1 ligand 1 antibodies for 8 wk after transfer. Histologically, macrophages infiltrated the retrobulbar adipose tissues and extraocular muscles in a small fraction of the recipients. Our findings demonstrate successful adoptive transfer of anti-TSHR immune response from TSHR KO mice to nude mice. Although the recipient mice developed only transient and infrequent hyperthyroidism, followed by eventual hypothyroidism, induction of orbital inflammation suggests the possible role of anti-TSHR immune response for Graves' orbitopathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.