Abstract
The shape parameter of Topp–Leone distribution is estimated in this article from the Bayesian viewpoint under the assumption of known scale parameter. Bayes and empirical Bayes estimates of the unknown parameter are proposed under non informative and suitable conjugate priors. These estimates are derived under the assumption of squared and linear-exponential error loss functions. The risk functions of the proposed estimates are derived in analytical forms. It is shown that the proposed estimates are minimax and admissible. The consistency of the proposed estimates under the squared error loss function is also proved. Numerical examples are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.