Abstract

During the manufacturing process of multilayered fiber-reinforced composites with variable fiber orientations, residual stresses build up in these composites due to the directional expansion of single unidirectionally reinforced layers. Depending on the laminate lay-up, the inhomogeneous residual stresses, which are caused by thermal effects, moisture absorption, and chemical shrinkage, can lead to large multistable out-of-plane deformations. Instead of avoiding these curvatures, they can be advantageously used for technical applications following the near-net-shape technology. In order to adjust the deformations to the technical requirements, genetic algorithms in combination with a nonlinear calculation method have been developed, which can purposefully adapt the laminate lay-up depending on the loading and process parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.