Abstract
AbstractSupremum score test statistics are often used to evaluate hypotheses with unidentifiable nuisance parameters under the null hypothesis. Although these statistics provide an attractive framework to address non‐identifiability under the null hypothesis, little attention has been paid to their distributional properties in small to moderate sample size settings. In situations where there are identifiable nuisance parameters under the null hypothesis, these statistics may behave erratically in realistic samples as a result of a non‐negligible bias induced by substituting these nuisance parameters by their estimates under the null hypothesis. In this paper, we propose an adjustment to the supremum score statistics by subtracting the expected bias from the score processes and show that this adjustment does not alter the limiting null distribution of the supremum score statistics. Using a simple example from the class of zero‐inflated regression models for count data, we show empirically and theoretically that the adjusted tests are superior in terms of size and power. The practical utility of this methodology is illustrated using count data in HIV research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.