Abstract

Empirical likelihood is a well-known nonparametric method in statistics and has been widely applied in statistical inference. The method has been employed by Lu and Peng (2002) to constructing confidence intervals for the tail index of a heavy-tailed distribution. It is demonstrated in Lu and Peng (2002) that the empirical likelihood-based confidence intervals perform better than confidence intervals based on normal approximation in terms of the coverage probability. In general, the empirical likelihood method can be hindered by its imprecision in the coverage probability when the sample size is small. This may cause a serious undercoverage issue when we apply the empirical likelihood to the tail index as only a very small portion of observations can be used in the estimation of the tail index. In this paper, we employ an adjusted empirical likelihood method, developed by Chen et al. (2008) and Liu and Chen (2010), to constructing confidence intervals of the tail index so as to achieve a better accuracy. We conduct a simulation study to compare the performance of the adjusted empirical likelihood method and the normal approximation method. Our simulation results indicate that the adjusted empirical likelihood method outperforms other methods in terms of the coverage probability and length of confidence intervals. We also apply the adjusted empirical likelihood method to a real data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.