Abstract

Abstract In this work, we hedge against the uncertainty in the of batch process scheduling by using a novel two-stage adjustable robust optimization (ARO) approach. We introduce symmetric uncertainty sets into the deterministic mixed-integer linear programming (MILP) model for batch scheduling problem and then reformulate it into a two-stage problem. The budgets of uncertainty is used to adjust the degree of conservatism. Since the resulting two-stage ARO problem cannot be solved directly by any existing optimizer, the column-and-constraint generation (C&CG) algorithm is then applied to solve it efficiently. One case study for batch manufacturing processes is considered to demonstrate the validation of the two-stage ARO model formulation and the efficiency of the C&CG algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.