Abstract
BackgroundExperimental clinical stem cell therapy has been used for more than a decade to alleviate the adverse aftermath of acute myocardial infarction (aMI). The post-infarcted myocardial microenvironment is characterized by cardiomyocyte death, caused by ischemia and inflammation. These conditions may negatively affect administered stem cells. As postnatal cardiomyocytes have a poor proliferation rate, while induction of proliferation seems even more rare. Thus stimulation of their proliferation rate is essential after aMI. In metaplastic disease, the pro-inflammatory cytokine interleukin-6 (IL-6) has been identified as potent mediators of the proliferation rate. We hypothesized that IL-6 could augment the proliferation rate of (slow-)dividing cardiomyocytes.MethodsTo mimic the behavior of therapeutic cells in the post-infarct cardiac microenvironment, human Adipose Derived Stromal Cells (ADSC) were cultured under hypoxic (2% O2) and pro-inflammatory conditions (IL-1β) for 24h. Serum-free conditioned medium from ADSC primed with hypoxia and/or IL-1β was added to rat neonatal cardiomyocytes and adult cardiomyocytes (HL-1) to assess paracrine-driven changes in cardiomyocyte proliferation rate and induction of myogenic signaling pathways.ResultsWe demonstrate that ADSC enhance the proliferation rate of rat neonatal cardiomyocytes and adult HL-1 cardiomyocytes in a paracrine fashion. ADSC under hypoxia and inflammation in vitro had increased the interleukin-6 (IL-6) gene and protein expression. Similar to conditioned medium of ADSC, treatment of rat neonatal cardiomyocytes and HL-1 with recombinant IL-6 alone also stimulated their proliferation rate. This was corroborated by a strong decrease of cardiomyocyte proliferation after addition of IL-6 neutralizing antibody to conditioned medium of ADSC. The stimulatory effect of ADSC conditioned media or IL-6 was accomplished through activation of both Janus Kinase-Signal Transducer and Activator of Transcription (JAK/STAT) and Mitogen-Activated Protein (MAP) kinases (MAPK) mitogenic signaling pathways.ConclusionADSC are promising therapeutic cells for cardiac stem cell therapy. The inflammatory and hypoxic host post-MI microenvironment enhances the regenerative potential of ADSC to promote the proliferation rate of cardiomyocytes. This was achieved in paracrine manner, which warrants the development of ADSC conditioned medium as an “of-the-shelf” product for treatment of post-myocardial infarction complications.
Highlights
Postnatal cardiomyocytes (CM) have a limited proliferation rate that does not suffice to replenish the CM that are massively lost after Myocardial Infarction (MI)
Adipose Derived Stromal Cells (ADSC) promote the rate of cardiomyocyte proliferation in direct co-culture We determined whether ADSC enhance the rate of cardiomyocyte proliferation in direct co-culture
ADSC significantly enhanced the rate of proliferation of HL-1 cardiomyocytes by 45% and 46% in 1:1 and 1:3 ratios compared to HL-1 cardiomyocyte alone (p < 0.05, Figure 1C, H)
Summary
Postnatal cardiomyocytes (CM) have a limited proliferation rate that does not suffice to replenish the CM that are massively lost after Myocardial Infarction (MI). Novel therapies that promote the proliferation of CM after acute Myocardial Infarction (aMI) may alleviate postinfarct complications such as heart failure. Current research on preconditioning BM-MSC with the hypoxic and the inflammatory factors found in post-MI microenvironment improve the cardioprotective outcome of the therapeutic cells [8,9,10]. Experimental clinical stem cell therapy has been used for more than a decade to alleviate the adverse aftermath of acute myocardial infarction (aMI). The post-infarcted myocardial microenvironment is characterized by cardiomyocyte death, caused by ischemia and inflammation. These conditions may negatively affect administered stem cells. We hypothesized that IL-6 could augment the proliferation rate of (slow-)dividing cardiomyocytes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.