Abstract

Beneficial effects of physical exercise include improved insulin sensitivity, which may be affected by a modulated release of adiponectin, which is exclusively synthesized in white adipose tissue and mediates insulin sensitivity. Adiponectin circulates in three different oligomers, which also have a distinct biological function. We therefore aimed to investigate the distribution of adiponectin oligomers in human serum in relation to physical activity. Thirty-eight lean and healthy individuals were investigated. Seven healthy women and 8 healthy men volunteered to investigate the effect of chronic exercise, at 3 different time points with different training intensities. These individuals were all highly trained and were compared to a control group with low physical activity (n = 15). For studying acute exercise effects, 8 healthy men participated in a bicycle test. Adiponectin was determined by ELISA, oligomers were detected by non-denaturating western blot. Total adiponectin and oligomers were unchanged by acute exercise. LDL cholesterol was significantly lower in the chronic exercise group (p = 0.03). Total adiponectin levels and oligomers were not different between these two groups and were unaltered by different training intensities. However, total adiponectin and specifically HMW oligomers correlated with HDL cholesterol (r = 0.459; p = 0.009). We conclude that acute and chronic exercise does not directly affect circulating adiponectin or oligomer distribution in lean and healthy individuals. Whether such regulation is relevant in individuals with a metabolic disorder remains to be determined. However, our data suggest that adiponectin oligomers have distinct physiological functions IN VIVO, and specifically HMW adiponectin is closely correlated with HDL cholesterol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.