Abstract

Chemical exchange sensitive spin-lock and related techniques allow to observe the uptake of administered D-glucose in vivo. The exchange-weighting increases with the magnetic field strength, but inhomogeneities in the radiofrequency (RF) field at ultrahigh field whole-body scanners lead to artifacts in conventional spin-lock experiments. Thus, our aim was the development of an adiabatically prepared T1ρ -based imaging sequence applicable to studies of glucose metabolism in tumor patients at ultrahigh field strengths. An adiabatically prepared on-resonant spin-lock approach was realized at a 7 Tesla whole-body scanner and compared with conventional spin-lock. The insensitivity to RF field inhomogeneities as well as the chemical exchange sensitivity of the approach was investigated in simulations, model solutions and in the human brain. The suggested spin-lock approach was shown to be feasible for in vivo application at ultrahigh field whole-body scanners and showed substantially improved image quality compared with conventional spin-lock. The sensitivity of the presented method to glucose was verified in model solutions and a glucose contrast was observed in a glioblastoma patient after intravenous administration of glucose solution. An adiabatically prepared spin-lock preparation was presented that enables a homogeneous and chemical exchange sensitive T1ρ -based imaging at ultra-high field whole-body scanners, e.g., for T1ρ -based dynamic glucose enhanced MRI. Magn Reson Med 78:215-225, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.