Abstract

We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. Only diatomic molecules are considered. The method is based on a two-electron \rmath approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via multichannel version of the Coulomb Green's function. This approach is put into a test by its application to a study of Rydberg states of the hydrogen molecule for internuclear distances $R$ from 20 to 400 bohrs and energies corresponding to $n$ from 3 to 22. The results are compared with previous quantum chemical calculations (lower quantum numbers $n$) and computations based on contact potential models (higher quantum numbers $n$).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.