Abstract

In connection with our discovery of the adenylyl cyclase signaling mechanism (ACSM) of action of some peptides belonging to the insulin superfamily, a possibility of its involvement in action of another insulin superfamily peptide, relaxin, was studied. It was shown for the first time that human relaxin-2 (10−12–10−8 M) activated adenylyl cyclase (AC) in a dose-dependent manner. The maximal peptide effect was revealed at a concentration of 10−8 M. Under condition of the hormonal action the basal enzyme activity increased by +310% in human myometrium, by +117%, in rat skeletal muscles, and by +49%, in foot smooth muscles of the bivalve mollusc Anodonta cygnea. Insulin and mammalian insulin-like growth factor-I (IGF-I) also produced the AC activating effect in these muscles. The order of efficiency of these peptides, based on their ability to induce the maximal AC stimulating effect, was as follows: relaxin > IGF-I > insulin (human myometrium); IGF-I > relaxin > insulin (rat skeletal muscle); insulin-like peptide of Anodonta (ILPA) > IGF-I > insulin > relaxin (molluscan muscle). The relaxin activating effect on AC was potentiated by a guanine nucleotide, the non-hydrolyzed analog of GTP, guanylylimidodiphosphate (Gpp[NH]p), which indicates participation of Gs-protein in realization of this effect. This effect was inhibited by a tyrosine kinase selective blocker, tyrphostin 47, and a phosphatidylinositol-3-kinase (PI-3-K) selective blocker, wortmannin. Thus, for the first time, participation of ACSM in the relaxin action has been established. This mechanism, as suggested at the present time state of its study, includes the following signal pathway: receptor-tyrosine kinase ⇒ PI-3-K ⇒ Gs-protein ⇒ AC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.