Abstract
Phenotypic transformation from adventitial fibroblasts (AFs) to myofibroblasts (MFs) is critical for vascular remodeling. Septin 2 was found to be downregulated during the differentiation of AFs to MFs induced by angiotensin II (Ang II); however, the role of septin 2 in this process is still unknown. In this study, we investigate whether septin 2 contributes to the adventitial MF phenotypic modulation caused by Ang II. The decreased level of septin 2 and the increased expression of α-smooth muscle actin (α-SMA), a marker of MFs, were readily observed in Ang II-stimulated MF differentiation. After gene transfer of septin 2, the expression of α-SMA was markedly decreased and the MF migration response to Ang II was inhibited. Furthermore, the inhibition of RhoA, another molecule involved in MF phenotypic modulation, decreased the motility of MFs and the expression of septin 2 triggered in Ang II. Finally, transfection of septin 2 rescued the level of acetyl-α-tubulin in MFs. These findings demonstrate that, as a downstream molecule of RhoA, septin 2 blunted the responses of AFs to Ang II by protecting α-tubulin acetylation, which suggests that septin 2 may serve as a potential therapeutic target for vascular injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.