Abstract

Charcot-Marie-Tooth type 2A disease (CMT2A), a dominantly inherited peripheral neuropathy, is caused by mutations in MFN2, a mitochondrial fusion protein. Having previously demonstrated a mitochondrial coupling defect in CMT2A patients' fibroblasts, we here investigate mitochondrial oxygen consumption and the expression of adenine nucleotide translocase (ANT) and uncoupling proteins from eight other patients with the disease. The mitochondrial uncoupling was associated with a higher respiratory rate, essentially involving complex II proteins. Furthermore, a twofold increase in the expression of ANT led to the reduced efficiency of oxidative phosphorylation in CMT2A cells, suggesting that MFN2 plays a role in controlling ATP/ADP exchanges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.