Abstract

Phenoxathiin cation radical perchlorate (PO.+ClO4(-)) added stereospecifically to cyclopentene, cyclohexene, cycloheptene, and 1,5-cyclooctadiene to give 1,2-bis(5-phenoxathiiniumyl)cycloalkane diperchlorates (4-7) in good yield. The diaxial configuration of the PO+ groups was confirmed with X-ray crystallography. Unlike additions of thianthrene cation radical perchlorate (Th.+ClO4(-)) to these cycloalkenes, no evidence for formation of monoadducts was found in the reactions of PO.+ClO4(-). This difference is discussed. Addition of Th.+ClO4(-) to five trans alkenes (2-butene, 2-pentene, 4-methyl-2-pentene, 3-octene, 5-decene) and four cis alkenes (2-pentene, 2-hexene, 2-heptene, 5-decene) gave in each case a mixture of mono- and bisadducts in which the configuration of the alkene was retained. Thus, cis alkenes gave erythro monoadducts and threo bisadducts, whereas trans alkenes gave threo monoadducts and erythro bisadducts. In these additions to alkenes, cis alkenes gave predominantly bisadducts, while trans alkenes (except for trans-2-butene) gave predominantly monoadducts. This difference is explained. 1,2-Bis(5-phenoxathiiniumyl)cycloalkanes (4-7) and 1,2-bis(5-thianthreniumyl)cycloalkanes underwent fast elimination reactions on activated alumina forming, respectively, 1-(5-phenoxathiiniumyl)cycloalkenes (8-11) and 1-(5-thianthreniumyl)cycloalkenes (12-16). Among adducts of Th.+ClO4(-) and alkenes, monoadducts underwent fast ring opening on alumina to give (5-thianthreniumyl)alkenes, while bisadducts underwent fast eliminations of H+ and thianthrene (Th) to give (5-thianthreniumyl)alkenes also. Ring opening of monoadducts was a stereospecific reaction in which the configuration of the original alkene was retained. Thus, erythro monoadducts (from cis alkenes) gave (E)-(5-thianthreniumyl)alkenes and threo monoadducts (from trans alkenes) gave (Z)-(5-thianthreniumyl)alkenes. Among bisadducts, elimination of a proton and Th occurred and was more complex, giving both (E)- and (Z)-(5-thianthreniumyl)alkenes. These results are explained. Configurations of adducts and (5-thianthreniumyl)alkenes were deduced with the aid of X-ray crystallography and (1)H and (13)C NMR spectroscopy. In the NMR spectra of (E)- and (Z)-(5-thianthreniumyl)alkenes, the alkenyl proton of Z isomers always appeared at a lower field (0.8-1.0 ppm) than that of E isomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.