Abstract
Experimental and hydrodynamic simulation results of submicrosecond time scale underwater electrical explosions of planar Cu and Al wire arrays are presented. A pulsed low-inductance generator having a current amplitude of up to 380 kA was used. The maximum current rise rate and maximum power achieved during wire array explosions were dI/dt≤830 A/ns and ∼10 GW, respectively. Interaction of the water flow generated during wire array explosion with the target was used to estimate the efficiency of the transfer of the energy initially stored in the generator energy to the water flow. It was shown that efficiency is in the range of 18%–24%. In addition, it was revealed that electrical explosion of the Al wire array allows almost double the energy to be transferred to the water flow due to efficient combustion of the Al wires. The latter allows one to expect a significant increase in the pressure at the front of converging strong shock waves in the case of cylindrical Al wire array underwater explosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.