Abstract

An addressable label-free photoelectric immunosensor array was designed for detection of neuron specific enolase (NSE) based on TiO2/CdS as substrate materials. In this work, the hydrothermal synthesized TiO2 nanorod film is evenly grown on the surface of the fluorine-doped tin oxide (FTO), and then CdS with a narrow band gap is added for sensitization through successive ionic layer adsorption reactions. The obtained TiO2/CdS composite materials with matched energy band structures promote the rapid electron transfer and effectively reduce the recombination of electron hole pairs, which greatly enhance the visible light absorption and increased photocurrent intensity. In order to construct a suitable sensor array, the sensitized FTO electrode is divided into multiple regions of equal size by insulating stickers, and then the addressable and continuous detection of multiple samples can be achieved. Because multiple detection regions are prepared and tested under the same conditions, the difference effectively reduces, and the sensor can realize self-calibration and obtain more accurate results. Under optimal conditions, this sensor array can detect NSE in the linear range of 0.01-100 ng mL-1 with a detection limit of 2.49 pg mL-1 (S/N = 3). The sensor array has good selectivity, stability, and reproducibility, making it a viable approach for real sample detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.