Abstract

Mullite, one of the main refractory materials, has several applications that may demand tiny structures with complex geometries, and digital light processing (DLP) can produce such parts with outstanding dimensional precision and surface quality. In this work, electrofused mullite powder was used as a raw material for additive manufacturing by DLP. Photosensitive mullite suspensions were developed and their rheological behavior, stability, and thermal decomposition were investigated. Mullite parts were printed from suspensions with different ceramic loadings, debound, and sintered at different temperatures (from 1500 to 1650 °C). Density and strength increased with an increase in both solid loading and sintering temperature. Printed parts from slurry with 50 vol% of solid loading sintered at 1650 °C reached a relative density of 97.7 ± 0.3 % and flexural strength of 95.2 ± 5.0 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.