Abstract

BackgroundIncreasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock. Synergistic effects between the enzymes deployed in the hydrolysis of various hemicelluloses have been demonstrated, which can reduce process costs by lowering the amount of enzyme required for the reaction. Xyloglucan is the only major hemicellulose for which no such effects have been described yet.ResultsWe report the beneficial combination of two enzymes for the degradation of the hemicellulose xyloglucan. The addition of β-galactosidase Bga2B from Clostridium stercorarium to an in vitro hydrolysis reaction of a model xyloglucan substrate increased the enzymatic efficiency of endoglucanase Cel9D from Clostridium thermocellum to up to 22-fold. Furthermore, the total amount of enzyme required for high hydrolysis yields was lowered by nearly 80%. Increased yields were also observed when using a natural complex substrate—tamarind kernel powder.ConclusionThe findings of this study may improve the valorization of feedstocks containing high-xyloglucan amounts. The combination of the endoglucanase Cel9D and the β-galactosidase Bga2B can be used to efficiently produce the heptasaccharide XXXG. The exploitation of one specific oligosaccharide may open up possibilities for the use as a prebiotic or platform chemical in additional reactions.

Highlights

  • Increasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock

  • Because lignocellulolytic polysaccharides show a complex and diverse composition, multiple enzyme classes are required for their hydrolysis [1, 2]

  • Synergism between endo- and exoglucanases has been described to lower the enzyme concentration required for cellulose degradation [6,7,8,9]

Read more

Summary

Introduction

Increasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock. Synergistic effects between the enzymes deployed in the hydrolysis of various hemicelluloses have been demonstrated, which can reduce process costs by lowering the amount of enzyme required for the reaction. Synergism between endo- and exoglucanases has been described to lower the enzyme concentration required for cellulose degradation [6,7,8,9]. The addition of non-cellulolytic enzymes, such as xylanases, can further enhance the hydrolytic potential of cellulase mixtures [10,11,12] and increase the hydrolytic efficiency of pretreated bagasse by enhancing cellulose accessibility [13]. The degradation of xylans, arabinoxylans, can be improved by exploiting the synergistic effects of β-xylanases, β-xylosidases, and α-arabinofuranosidases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.