Abstract

Control schemes in a solar plant complying with different grid codes modulate the output voltage and current significantly during the fault. In this article, the issue with conventional current differential approaches for the line connecting the large solar plant is analyzed and a new protection technique using both end incremental current phasors is proposed. The proposed method uses two criteria to identify the internal faults in such connectivity. The first criterion is based on the ratio of both end incremental phase current phasors, and the second one uses the magnitude ratio of positive sequence incremental currents. Both the criteria are adaptive to line terminal currents and complement each other enriching the method applicable for any system condition. The performance of the proposed method is tested for different internal and external fault cases and found to be accurate. The compatibility of the proposed method is also validated using a real-time simulator. Comparative assessment with conventional current differential techniques reveals the superiority of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.