Abstract
The steering-by-wire (SbW) system is one of the main subsystems of automatic vehicles, realizing the steering control of autonomous vehicles. This paper proposes an event-triggered adaptive sliding mode control for the SbW system subject to the uncertain nonlinearity, time-varying disturbance, and limited communication resources. Firstly, an event-triggered nested adaptive sliding mode control is proposed for SbW systems. The uncertain nonlinearity is approximated by the interval type-2 fuzzy logic system (IT2 FLS). The time-varying disturbance, modeling error, and event-triggering error can be offset by robust terms of sliding mode control. The key advantage is that the high-frequency switching of sliding mode control only appears on the time derivate of control input without increasing the input-output relative degree of closed-loop SbW systems, such that the chattering phenomenon can be eliminated. Finally, theoretical analysis shows that the practical finite-time stability of the closed-loop SbW system can be achieved, and communication resources in the controller-to-actuator channels can be saved while avoiding the Zeno-behavior. Numerical simulations and experiments are given to evaluate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.