Abstract

This paper addresses the tracking control problem of unmanned underwater vehicles under the condition of external disturbances and unmodeled dynamics using Port-Hamiltonian theory. By introducing Port-Hamiltonian theory, conventional UUVs dynamics can be transformed into Port-Hamiltonian form with insightful expressions. Then, combined with a structure preserving adaptive method, unmodeled dynamics and unknown disturbances can be addressed simultaneously without destroying the interconnection structure of the Hamiltonian system. Finally, based on interconnection and damping assignment passivity-based control, the controller is designed in an intuitive way. The dissipation property of Port-Hamiltonian theory is utilized to prove the stability. Compared with other methods that come from the view of signal processing, the proposed scheme has the advantages of better potential and physical interpretation of engineering applications. Simulations and comparisons are conducted to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.