Abstract

AbstractA locally refined (LR) B-spline surface is a piecewise polynomial surface for which the distribution of the surface coefficients can be locally adapted. Such a mathematical representation is interesting for fitting scattered and noisy data, as the local behaviour of a real point cloud may require more degrees of freedom only locally. The number of redundant surface coefficients is minimized, which avoids the fitting of the point cloud’s noise. The surface approximation is performed iteratively either by solving a least squares system or by a local approximation method. This procedure allows for mesh refinement in domains where the distance between a current surface and the point cloud exceeds a prescribed tolerance. In this way, parts of the LR B-spline surface obtained at previous steps may be kept unchanged. This chapter aims at explaining the adaptive fitting using local refinement with LR B-splines. We present two examples with simulated point clouds to illustrate the methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.