Abstract

It is a big challenge to segment magnetic resonance (MR) images with intensity inhomogeneity. The widely used segmentation algorithms are region based, which mostly rely on the intensity homogeneity, and could bring inaccurate results. In this paper, we propose a novel region-based active contour model in a variational level set formulation. Based on the fact that intensities in a relatively small local region are separable, a local intensity clustering criterion function is defined. Then, the local function is integrated around the neighborhood center to formulate a global intensity criterion function, which defines the energy term to drive the evolution of the active contour locally. Simultaneously, an intensity fitting term that drives the motion of the active contour globally is added to the energy. In order to segment the image fast and accurately, we utilize a coefficient to make the segmentation adaptive. Finally, the energy is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. Experiments on synthetic and real MR images show the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.