Abstract

This paper presents an adaptive mesh refinement technique suitable for the resolution of highly localized damage in concrete and other quasi-brittle materials. The objectivity of the description of softening is ensured by using regularized material models based on the concept of nonlocal averaging, which is applied to isotropic and anisotropic damage formulations. The distributions of strain and internal variables produced by such regularized models are continuous, which facilitates the projection of information from one finite element mesh onto another. However, not all mapping algorithms for the transfer of internal variables preserve the basic characteristics of the localized process zone. The paper evaluates and compares three mapping algorithms, which are based on the closest-point transfer, least-squares projection, and shape-function projection. It also briefly comments on other important components of a complete adaptive strategy, i.e., on the error indicator, refinement rules, and mesh generator. The efficiency of the proposed strategy is illustrated by examples that treat straight as well as curved crack trajectories. The underlying material model is a nonlocal integral formulation of anisotropic damage based on the microplane concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.