Abstract
AbstractAs part of a Distributed Information Retrieval system a description of each remote information resource, archive or repository is usually stored centrally in order to facilitate resource selection. The acquisition of precise resource descriptions is therefore an important phase in Distributed Information Retrieval, as the quality of such representations will impact on selection accuracy, and ultimately retrieval performance. While Query-Based Sampling is currently used for content discovery of uncooperative resources, the application of this technique is dependent upon heuristic guidelines to determine when a sufficiently accurate representation of each remote resource has been obtained. In this paper we address this shortcoming by using the Predictive Likelihood to provide both an indication of the quality of an acquired resource description estimate, and when a sufficiently good representation of a resource has been obtained during Query-Based Sampling.KeywordsLanguage ModelResource SelectionSelection AccuracyComparable IndicationRemote ResourceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.