Abstract

We investigate the frequentist properties of Bayesian procedures for estimation based on the horseshoe prior in the sparse multivariate normal means model. Previous theoretical results assumed that the sparsity level, that is, the number of signals, was known. We drop this assumption and characterize the behavior of the maximum marginal likelihood estimator (MMLE) of a key parameter of the horseshoe prior. We prove that the MMLE is an effective estimator of the sparsity level, in the sense that it leads to (near) minimax optimal estimation of the underlying mean vector generating the data. Besides this empirical Bayes procedure, we consider the hierarchical Bayes method of putting a prior on the unknown sparsity level as well. We show that both Bayesian techniques lead to rate-adaptive optimal posterior contraction, which implies that the horseshoe posterior is a good candidate for generating rate-adaptive credible sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.