Abstract
SummaryIn this paper, an adaptive optimal control strategy is proposed for a class of strict‐feedback nonlinear systems with output constraints by using dynamic surface control. The controller design procedure is divided into two parts. One is the design of feedforward controller and the other is the design of optimal controller. To guarantee the satisfaction of output constraints in feedforward controller, nonlinear mapping is utilized to transform the constrained system into an unconstrained system. Neural‐network based adaptive dynamic programming algorithm is employed to approximate the optimal cost function and the optimal control law. By theoretical analysis, all the signals in the closed‐loop system are proved to be semi‐globally uniformly ultimately bounded and the output constraints are not violated. A numerical example illustrates the effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.