Abstract

In this paper, a novel robust adaptive barrier Lyapunov function (BLF)-based backstepping controller has been proposed for a class of interconnected, multi-input-multi-output (MIMO) unknown nonaffine nonlinear systems with asymmetric time-varying (ATV) state constraints. The design involves a neural-network-based online approximator to cope with uncertain dynamics of the system. To tune its weights, a novel adaptive law is proposed based on the Hadamard product. A theorem has also been proposed to have the bounds on virtual control signals beforehand. This theorem eliminates the need for tedious offline computation for the feasibility condition on the virtual controller in BLF-based controller design. To overcome the problem of unknown control gain in the nonaffine system, Nussbaum gain has been used during the design. A simulation study on the robot manipulator in task space has been performed to illustrate the effectiveness of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.