Abstract

This paper presents the hardware implementation (both ASIC and FPGA) of a fuzzy logic-based adaptive routing scheme for Network-on-Chip (NoC). The routing scheme takes into account the dynamic traffic load and power consumption on neighboring router links to select the output port of an incoming flit. Specifically, fuzzy logic control is used to build a simple, generic, and efficient nonlinear control law that dynamically calculates the input link cost. Basing the link cost on traffic load and power consumption and not on empty buffer slots, makes the proposed algorithm applicable to both buffered and bufferless NoCs. Hardware implementation in ASIC and FPGA technologies demonstrate that the hardware area overhead imposed by the fuzzy control logic is from minimal to negligible for practical flit sizes and scales excellently with network size. Furthermore, since the fuzzy control logic is not in the router critical path, it imposes no additional latency. Finally, we demonstrate the efficiency of the proposed routing scheme through simulative evaluation against representative conventional counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.