Abstract
Multi-species kinematic flow models lead to strongly coupled, nonlinear systems of first-order, spatially one-dimensional conservation laws. The number of unknowns (the concentrations of the species) may be arbitrarily high. Models of this class include a multi-species generalization of the Lighthill–Whitham–Richards traffic model and a model for the sedimentation of polydisperse suspensions. Their solutions typically involve kinematic shocks separating areas of constancy, and should be approximated by high resolution schemes. A fifth-order weighted essentially non-oscillatory (WENO) scheme is combined with a multiresolution technique that adaptively generates a sparse point representation (SPR) of the evolving numerical solution. Thus, computational effort is concentrated on zones of strong variation near shocks. Numerical examples from the traffic and sedimentation models demonstrate the effectiveness of the resulting WENO multiresolution (WENO-MRS) scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.