Abstract

Multi-User Multiple Input Multiple Output (MU-MIMO) can significantly increase the link capacity without bandwidth expansion. One promising technique is MMSE-SVD, which is a combination of minimum mean square error (MMSE) filter at the base station (BS) side and eigenmode filter generated by singular value decomposition (SVD) at user equipment (UE) side. MMSE-SVD requires BS and UEs to share the MIMO channel state information (CSI) prior to data transmission. This may cause a serious problem in a high mobility environment; the shared MIMO CSI becomes outdated and consequently, the bit-error rate (BER) performance degrades. In this paper, we propose an adaptive MMSE-SVD, which updates the transmit filter using channel prediction and the receive filter using decision-feedback channel estimation. The uncoded BER performance of adaptive MMSE-SVD for orthogonal frequency division multiplexing (OFDM) downlink and single-carrier (SC) uplink is evaluated by computer simulation. Simulation results confirmed that adaptive MMSE-SVD increases the allowable maximum Doppler frequency ( $\boldsymbol{f}_{\mathbf{D}}\boldsymbol{T}$ ) for keeping $\mathbf{BER} by about 4 times for OFDM downlink while by about 1.6 times for SC uplink.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.