Abstract

This paper presents a simple scheme for the generation of a quadrilateral element mesh for shells with arbitrary three-dimensional geometry. The present mesh generation scheme incorporates a normal mesh generator for generating a mesh in the two-dimensional plane and a specific mapping technique which maps the two-dimensional mesh onto the three-dimensional curved surface. As the mapping is a one-to-one mapping between the mesh in the plane and that on the curved surface, the resulting surface discretization is compatible with the local mesh parameters in two dimensions. This scheme is further combined, both with a sophisticated error estimate determined by using the best guess values of bending moments and membrane and transverse shear forces obtained from a previous solution, and an effective mesh refinement strategy established at an element level in order to complete an adaptive analysis for shell structures. Numerical examples are shown to illustrate the principles and procedure of the present adaptive analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.