Abstract
This paper addresses the problem of designing an output error feedback tracking control for single-input, single-output, minimum phase, observable nonlinear systems with unknown smooth output dependent nonlinearities. The reference output signal is assumed to be smooth and periodic with known period. By developing in Fourier series expansion a suitable periodic input reference signal, an output error feedback adaptive learning control is designed which ’learns’ the input reference signal by identifying its Fourier coefficients: exponential tracking of both the input and output reference signals is achieved if the Fourier series expansion is finite while arbitrary small tracking errors are exponentially guaranteed otherwise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.