Abstract

Answer-set programming (ASP) is a prominent approach to declarative problem solving that is increasingly used to tackle challenging optimisation problems. We present an approach to leverage ASP optimisation by using large-neighbourhood search (LNS), which is a meta-heuristic where parts of a solution are iteratively destroyed and reconstructed in an attempt to improve an overall objective. In our LNS framework, neighbourhoods can be specified either declaratively as part of the ASP encoding or automatically generated by code. Furthermore, our framework is self-adaptive, i.e., it also incorporates portfolios for the LNS operators along with selection strategies to adjust search parameters on the fly. The implementation of our framework, the system ALASPO, currently supports the ASP solver clingo, as well as its extensions clingo-dl and clingcon that allow for difference and full integer constraints, respectively. It utilises multi-shot solving to efficiently realise the LNS loop and in this way avoids program regrounding. We describe our LNS framework for ASP as well as its implementation, discuss methodological aspects, and demonstrate the effectiveness of the adaptive LNS approach for ASP on different optimisation benchmarks, some of which are notoriously difficult, as well as real-world applications for shift planning, configuration of railway-safety systems, parallel machine scheduling, and test laboratory scheduling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.