Abstract
An adaptive approach to the estimation of the instantaneous frequency (IF) of nonstationary mono- and multicomponent FM signals with additive Gaussian noise is presented. The IF estimation is based on the fact that quadratic time-frequency distributions (TFDs) have maxima around the IF law of the signal. It is shown that the bias and variance of the IF estimate are functions of the lag window length. If there is a bias-variance tradeoff, then the optimal window length for this tradeoff depends on the unknown IF law. Hence, an adaptive algorithm with a time-varying and data-driven window length is needed. The adaptive algorithm can utilize any quadratic TFD that satisfies the following three conditions: First, the IF estimation variance given by the chosen distribution should be a continuously decreasing function of the window length, whereas the bias should be continuously increasing so that the algorithm will converge at the optimal window length for the bias-variance tradeoff, second, the time-lag kernel filter of the chosen distribution should not perform narrowband filtering in the lag direction in order to not interfere with the adaptive window in that direction; third, the distribution should perform effective cross-terms reduction while keeping high resolution in order to be efficient for multicomponent signals. A quadratic distribution with high resolution, effective cross-terms reduction and no lag filtering is proposed. The algorithm estimates multiple IF laws by using a tracking algorithm for the signal components and utilizing the property that the proposed distribution enables nonparametric component amplitude estimation. An extension of the proposed TFD consisting of the use of time-only kernels for adaptive IF estimation is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.