Abstract

This paper considers a semiparametric generalized autoregressive conditional heteroskedasticity (S-GARCH) model. For this model, we first estimate the time-varying long run component for unconditional variance by the kernel estimator, and then estimate the non-time-varying parameters in GARCH-type short run component by the quasi maximum likelihood estimator (QMLE). We show that the QMLE is asymptotically normal with the parametric convergence rate. Next, we construct a Lagrange multiplier test for linear parameter constraint and a portmanteau test for model checking, and obtain their asymptotic null distributions. Our entire statistical inference procedure works for the non-stationary data with two important features: first, our QMLE and two tests are adaptive to the unknown form of the long run component; second, our QMLE and two tests share the same efficiency and testing power as those in variance targeting method when the S-GARCH model is stationary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.