Abstract

This paper presents human–robot cooperation with adaptive behavior of the robot, which helps the human operator to perform the cooperative task and optimizes its performance. A novel adaptive impedance control is proposed for the robotic manipulator, whose end-effector's motions are constrained by human arm motion limits. In order to minimized motion tracking errors and acquire an optimal impedance mode of human arms, the linear quadratic regulation (LQR) is formulated; then, integral reinforcement learning (IRL) has been proposed to solve the given LQR with little information of the human arm model. Considering human–robot interaction force during the robot performing manipulation, a novel barrier-Lyapunov-function-based adaptive impedance control incorporating adaptive parameter learning is developed for physical limits, transient perturbations, and time-varying dynamics. Experimental results validate that the proposed controller is effective in assisting the operator to perform the human–robot cooperative task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.