Abstract

We assess the applicability and efficiency of time-adaptive high-order splitting methods applied for the numerical solution of (systems of) nonlinear parabolic problems under periodic boundary conditions. We discuss in particular several applications generating intricate patterns and displaying nonsmooth solution dynamics. First, we give a general error analysis for splitting methods for parabolic problems under periodic boundary conditions and derive the necessary smoothness requirements on the exact solution in particular for the Gray–Scott equation and the Van der Pol equation. Numerical examples demonstrate the convergence of the methods and serve to compare the efficiency of different time-adaptive splitting schemes and of splitting into either two or three operators, based on appropriately constructed a posteriori local error estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.