Abstract
This paper deals with the design of a robust adaptive fuzzy nonsingular fast terminal sliding mode control strategy for the relative motion control of spacecraft in formation. A nonsingular terminal sliding surface, along with a fast reaching law, has been considered for fast and finite time convergence. Adaptive tuning algorithms are derived based on Lyapunov stability theory for updating the controller gains involved in the fast reaching law. In order to reduce the chattering, the discontinuous term in the reaching law has been replaced by a fuzzy inference mechanism. Lyapunov based adaptive tuning laws are derived for updating the fuzzy parameters involved. Numerical simulations based on nonlinear dynamics defined in leader centered Hill's frame, have been presented to prove the robustness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.