Abstract

This paper presents an adaptive fuzzy controller for Nonlinear in Parameters (NLP) chaotic systems with parametric uncertainties. In the proposed controller, the unknown parameters are estimated by the novel Improved Speed Gradient (ISG) method, which is a modification of Speed Gradient (SG) algorithm. ISG employs the Lagrangian of two suitable objective functionals for on-line estimation of system parameters. The most significant advantage of ISG is that it is applicable to NLP systems and it results in a faster rate of convergence for the estimated parameters than the SG method. Estimated parameters are used to design the fuzzy controller and to calculate the Lyapunov exponents of the chaotic system adaptively. Furthermore, established on the well-known Takagi–Sugeno (T-S) fuzzy model, a LMI (Linear Matrix Inequality)-based fuzzy controller is designed and is tuned using estimated parameters and Lyapunov exponents. Throughout the controller design procedure, several important issues in fuzzy control theory including relaxed stability analysis, control input performance specifications, and optimality are taken into account. Combination of ISG parameter estimation method and T-S-based fuzzy controller yields an adaptive fuzzy controller capable to suppress uncertainties in parameters and initial states of NLP chaotic systems. Finally, simulation results are provided to show the effectiveness of the ISG and adaptive fuzzy controller on chaotic Lorenz system and Duffing oscillator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.