Abstract

In the field of modern industrial engineering, many mechanical systems are underactuated, exhibiting strong nonlinear characteristics and high flexibility. However, the lack of control inputs brings about many difficulties for controller design and stability/convergence analysis., some unavoidable practical issues, e.g., plant uncertainties and actuator deadzones, make the control of underactuated systems even more challenging. Hence, with the aid of elaborately constructed finite-time convergent surfaces, this article provides the first solution to address the control problem for a class of multi-input-multi-output (MIMO) underactuated systems subject to plant uncertainties and actuator deadzones. Specifically, this article overcomes the main obstacle in sliding-mode surface analysis for MIMO underactuated systems, that is, by the presented analysis method, the asymptotic stability of the system equilibrium point is strictly proven based on the composite surfaces. In addition, the unknown parts of the actuated/unactuated dynamic equations and actuator deadzones can be simultaneously handled, which is important for real applications. Furthermore, we apply the proposed method to two kinds of typical underactuated systems, that is: 1) tower cranes and 2) double-pendulum cranes, and implement a series of hardware experiments to verify its effectiveness and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.