Abstract
SummaryIn this paper, we study two dynamic frequency hopping (DFH)–based interference mitigation approaches for satellite communications. These techniques exploit the sensing capabilities of a cognitive radio to predict future interference on the upcoming frequency hops. We consider a topology where multiple low Earth orbit satellites transmit packets to a common geostationary equatorial orbit satellite. The FH sequence of each low Earth orbit–geostationary equatorial orbit link is adjusted according to the outcome of out‐of‐band proactive sensing scheme, performed by a cognitive radio module in the geostationary equatorial orbit satellite. On the basis of sensing results, new frequency assignments are made for the upcoming slots, taking into account the transmit powers, achievable rates, and overhead of modifying the FH sequences. In addition, we ensure that all satellite links are assigned channels such that their minimum signal‐to‐interference‐plus‐noise ratio requirements are met, if such an assignment is possible. We formulate two multi‐objective optimization problems: DFH‐Power and DFH‐Rate. Discrete‐time Markov chain analysis is used to predict future channel conditions, where the number of states are inferred using k‐means clustering, and the state transition probabilities are computed using maximum likelihood estimation. Finally, simulation results are presented to evaluate the effects of different system parameters on the performance of the proposed designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Satellite Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.