Abstract
This paper addresses a fault-tolerant formation tracking problem for multiple mobile robots, where the dynamics of each robot is nonholonomic with time-varying input delays and actuator faults. The control problem is challenging since the actuator faults (e.g., loss of effectiveness and biased faults) are unknown in the time-delay multi-agent systems. To this end, an adaptive compensator is proposed for the uncertain time-delay systems induced by the loss of effectiveness faults. With the aid of neural networks and auxiliary variables, a novel adaptive fault-tolerant formation tracking controller for each robot is developed without any restrictions on the rate of their unknown variables induced by the biased faults. The uniformly ultimately boundness for the closed-loop system is derived according to the Lyapunov–Krasovskii functional. Numerical simulations verify the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.