Abstract
ABSTRACTThe problem of event‐triggered finite‐time trajectory tracking control of perturbed Euler–Lagrange systems with nonlinear dynamics and disturbances is addressed in this article. Extreme learning machine (ELM) framework is employed to formulate unknown nonlinearities, and adaptive technique is adopted to adjust output weights of the ELM networks and remedy the negative impacts of disturbances, nonlinearities, and residual errors. Then to ensure the system follows the desired position trajectory within a finite‐time, an adaptive ELM‐based sliding mode control strategy is developed. Moreover, event‐triggered control technique is proposed to regulate control outputs on the basis of the developed control strategy for reducing actuator actions and saving communication resources. Lyapunov stability theorem is utilized to confirm bounded trajectory tracking results and finite‐time convergence of the Euler–Lagrange system. Finally, the effectiveness of the developed adaptive ELM‐based event‐triggered sliding‐mode control strategies is substantiated by simulations in a robotic manipulator system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.