Abstract

It has recently been demonstrated that ecological feedback mechanisms can facilitate the emergence and maintenance of cooperation in public goods interactions: the replicator dynamics of defectors and cooperators can result, for example, in the ecological coexistence of cooperators and defectors. Here we show that these results change dramatically if cooperation strategy is not fixed but instead is a continuously varying trait under natural selection. For low values of the factor with which the value of resources is multiplied before they are shared among all participants, evolution will always favour lower cooperation strategies until the population falls below an Allee threshold and goes extinct, thus evolutionary suicide occurs. For higher values of the factor, there exists a unique evolutionarily singular strategy, which is convergence stable. Because the fitness function is linear with respect to the strategy of the mutant, this singular strategy is neutral against mutant invasions. This neutrality disappears if a nonlinear functional response in receiving benefits is assumed. For strictly concave functional responses, singular strategies become uninvadable. Evolutionary branching, which could result in the evolutionary emergence of cooperators and defectors, can occur only with locally convex functional responses, but we illustrate that it can also result in coevolutionary extinction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.