Abstract

This paper focuses primarily on adaptive dynamic programming (ADP)-based tracking control of the hydraulic-driven flexible robotic manipulator system (HDFRMS) with varying payloads and uncertainties via singular perturbation theory (SPT). Firstly, the dynamics is derived using a driven Jacobin matrix, which represents the coupling between the hydraulic servo-driven system and rigid–flexible manipulator established using the assumed mode method and Lagrange principle. Furthermore, the whole dynamic model of the manipulator system is decoupled into a second slow subsystem (SSS), a second fast subsystem (SFS) and a first fast subsystem (FFS). The three subsystems can describe a large range of movement, flexible vibration and electro-hydraulic servo control, respectively. Hereafter, an adaptive dynamic programming trajectory tracking control law with a critic-only policy iteration algorithm is presented in the second slow timescale, while both robust optimal control (ROC) in the second first timescale and adaptive sliding mode control (ASMC) in the first fast timescale are also designed using the Lyapunov stability theory. Finally, the numerical simulations are carried out to illustrate the rightness and robustness of the singular perturbation decomposition and proposed composite control algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.