Abstract

This paper will present an approximate/adaptive dynamic programming (ADP) algorithm, that uses the idea of integral reinforcement learning (IRL), to determine online the Nash equilibrium solution for the two-player zerosum differential game with linear dynamics and infinite horizon quadratic cost. The algorithm is built around an iterative method that has been developed in the control engineering community for solving the continuous-time game algebraic Riccati equation (CT-GARE), which underlies the game problem. We here show how the ADP techniques will enhance the capabilities of the offline method allowing an online solution without the requirement of complete knowledge of the system dynamics. The feasibility of the ADP scheme is demonstrated in simulation for a power system control application. The adaptation goal is the best control policy that will face in an optimal manner the highest load disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.